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ABSTRACT: Satellite-derived observations of land surface temperature (LST) are being utilized in a growing number of
land surface studies; however, these observations are generally obtained from optical sensors that exclude cloudy observa-
tions of the land surface. The impact of using only clear-sky observations of land surfaces on monthly and annual estimates
of daytime LST over two U.S. Climate Reference Network (USCRN) sites was evaluated over five years with daily in situ
LST observations available for all-sky (clear and cloudy) conditions. The in situ LST observations were obtained for the
nominal daytime observations associated with the MODIS sensors on board the Terra and Aqua satellites and were identi-
fied as all-sky or clear-sky conditions by utilizing cloud information provided with the MODIS LST product. Both
monthly/annual mean and monthly/annual maximum values of daytime LST were significantly different when only clear-
sky values were utilized, in comparison with all-sky values. Monthly averaged differences between the mean clear- and all-
sky daytime LST (dLST) values ranged from 20.18 6 1.58C for January to 5.68 6 1.88C for May. Annually averaged dLST
values, over the five years of the study, were 2.588C, and differences between the maximum values of clear- and all-sky day-
time LST values were 21.038C. Although significant differences between mean annual clear-sky and all-sky daytime LST
values were more frequent than differences observed for the annual maximum daytime LST values, the results suggest that
the exclusive use of either mean or maximum clear-sky daytime LST values is not advisable for applications in which the
use of daytime all-sky LST values would be more applicable.
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1. Introduction

Land surface temperature (LST), a key variable in the land
surface–atmosphere exchange processes, has been identified
as one of the most important environmental data records
(WMO 2016; Popp et al. 2020) and is widely derived from
satellite-based thermal infrared (IR) sensors (Dash et al.
2002; Li et al. 2013) because of its global coverage in various
spatial and temporal resolutions.

Numerous studies have used satellite-derived observations
of LST for ecological, biogeographical, climatological, and
other land surface–related studies (e.g., Mildrexler et al. 2011;
Tomlinson et al. 2011; Popp et al. 2020) and for indirect esti-
mation of air temperature (Good 2016; Oyler et al. 2016;
Pepin et al. 2016). Depending on the applications, these stud-
ies have utilized mean (e.g., Jaber and Abu-Allaban 2020; Jin
and Dickinson 2010; Li et al. 2016; Yan et al. 2020) or maxi-
mum (Funk et al. 2019; Jiménez-Muñoz et al. 2013; Liu et al.
2021; Mildrexler et al. 2011) LST values over various time in-
tervals. Previous studies suggest that the maximum tempera-
ture is more appropriate for assessment of large-scale thermal
changes in climate systems than is mean daily averaged tem-
perature (Pielke et al. 2007; Liu et al. 2021). Mildrexler et al.
(2018) utilized maximum LST because of its potential to iden-
tify large-scale shifts in the biosphere and found that among
several valuable uses, the maximum LST values provided

valuable information related to ecosystem exposure to extreme
temperatures. Funk et al. (2019) utilized maximum LST values
in recognition that minimum LST values are more difficult to
distinguish from clouds. As observed in these studies, there are
potential issues of cloud interference with retrieval of satellite-
derived LST products based on thermal IR data. Thus, these
satellite-derived LST retrievals are limited to clear-sky condi-
tions (e.g., Li et al. 2016) because of their inability to penetrate
clouds and are not representative of all-sky (all weather) condi-
tions (Wan 2008), which may lead to possible biases that need
to be evaluated (Chen et al. 2017).

In recognition that there are differences between the LST
values derived from clear-sky as compared with all-sky condi-
tions there have been numerous methods proposed to esti-
mate the cloudy-sky LST observations and create a complete
record of daily LST observations. These proposed methods
include the use of available ground-based LST observations,
reanalysis products, statistical methods, gap filling, combina-
tion with satellite-based passive microwave measurements, or
by reconstructing cloudy pixels by combining multiple satel-
lite LST products (e.g., Chen et al. 2017; Duan et al. 2017; Li
et al. 2018; Long et al. 2020; Martins et al. 2019; Prigent et al.
2016; Shiff et al. 2021; Wang et al. 2019; Zhang et al. 2015;
Y. Zhang et al. 2020; Zhao and Duan 2020). Most of these
methods still have low accuracies because of the use of clear-
sky values in their methods, unidentified clouds, cloud detec-
tion errors, and an inability to completely remove the clouds
containing pixels in satellite LST products (Ackerman et al.
1998, 2008; Williamson et al. 2013; Duan et al. 2017; Ermida
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et al. 2019; Bulgin et al. 2018). Thus, the use of spaceborne IR
LST datasets in studies and applications will likely give results
that are possibly biased toward the clear-sky conditions.

Despite its importance, the attempts to quantify the clear-
sky bias of satellite-based LST, that is, the difference between
clear-sky and all-sky LSTs, are scarce because of the absence
of routinely available daily (all sky) satellite-derived LST. A
few attempts include the estimation of clear-sky bias by using
daily daytime and nighttime all-sky satellite passive micro-
wave (MW) surface temperature measurements and cloud
coverage information from MODIS LST product (Ermida
et al. 2019) or by evaluating the relationship between the dif-
ference in 5-km monthly satellite LST and ground-based LST
with clear-sky ratio (Chen et al. 2017). To avoid possible sour-
ces of uncertainties due to the differences in the LST retrieval
techniques, sensors in different platforms, scale difference
and heterogeneities, clear-sky bias has to be quantified using
LST observations that use similar IR LST measurement
techniques and platforms. In this context, it is important to
quantify the clear-sky bias using similar LST observations
especially during daytime (near solar noon) conditions, when
the land surface experiences the higher end of the daily range
of net radiation resulting in largest differences between clear
and cloudy LSTs and also, due to the dependence of many
land surface processes on daytime solar radiation and maxi-
mum temperatures (Gallo et al. 2011; Williamson et al. 2013).

This study was initiated, in the absence of routinely avail-
able daily (all sky) satellite-derived LST, to evaluate the bias
in the exclusive use of clear-sky as compared with all-sky ob-
servations of monthly and annual daytime LST. The objective
of this study was to use clear- and all-sky in situ observations
of daytime LST to evaluate the differences introduced in com-
putation and utilization of mean and maximum monthly day-
time LST values when only clear-sky, as compared with all-
sky, daytime LST observations are available. In this study,
we have used continuous daytime LST data from two U.S.
Climate Reference Network (USCRN) stations (Diamond
et al. 2013) to compute both the clear and all-sky daytime
monthly mean and maximum LST for the nominal observation
times associated with the daytime Terra and Aqua MODIS
sensors by using cloud information included with the MODIS
daily daytime LST products to identify clear-sky conditions.

2. Method

The difference between clear-sky versus all-sky daytime
LST was evaluated with continuous ground-based thermal in-
frared measurements of LST from two USCRN (https://www.
ncdc.noaa.gov/crn; NOAA/NESDIS 2007; Diamond et al.
2013) stations because satellite IR sensors provide only clear-
sky observations of LST. The two USCRN stations selected
had exhibited a wide range in clear and cloudy observations
in a previous study (Gallo et al. 2011). The USCRN station at
Kingston 1W, Rhode Island (41.498N, 71.548W), exhibited a
low number of clear days and high number of cloudy days
while the station at Wolf Point 29ENE, Montana (48.318N,
105.108W), displayed relatively low number of cloudy days
and high number of clear days. The LST observations at the

USCRN sites were measured using Apogee Instruments, Inc.,
precision infrared temperature (IRT) sensors pointed at the
ground surface (Krishnan et al. 2020). A default surface emis-
sivity of 1.0 was used because the USCRN LST observations
were made over grass vegetation ground cover with surface
emissivity ∼1.0. No other adjustments were made to the re-
ported LST values at these USCRN sites to maintain consis-
tency in LST measurements between the sites and to avoid
any potential bias caused by additional corrections for re-
flected downwelling longwave radiation and surface emissivity
(Gallo et al. 2011; Krishnan et al. 2015, 2020).

To identify the dates available for daytime clear-sky condi-
tions of LST at the two USCRN sites for 2015–19, we have
used the daytime quality control (QC) information associated
with the land surface products retrieved from the MODIS
sensors on board the Terra and Aqua satellites. The MODIS
level 3 LST Collection-6 product suite (MOD11A1.006 prod-
ucts for Terra and MYD11A1.006 for Aqua) developed by
Wan et al. (2002) and refined by Wan (2013) were retrieved
with the Land Processes Distributed Active Archive Center
(LP DAAC, https://lpdaac.usgs.gov/) application for extract-
ing and exploring analysis ready samples (AppEEARS) tool
(AppEEARS Team 2020). The daily daytime LST QC infor-
mation (Wan 2013) derived from both Terra and Aqua MODIS
sensors were retrieved for 2015–19 for the 1-km pixels containing
each of the two USCRN stations and used to designate clear-sky
periods over the USCRN sites. The MODIS LST values were
not used in this analysis to estimate bias as the MODIS observed
LST values were only available for clear-sky conditions. The
MODIS QC and cloud mask information were used as men-
tioned above to partition the daytime observed in situ LST at the
two USCRN sites into clear-sky and all-sky observations of LST.

The USCRN LST hourly averaged values (NOAA 2021)
were retrieved for the nominal observation times associated
with the daytime Terra and Aqua MODIS observations for
the two USCRN stations. As recognized by Jin and Dickinson
(2010) the daytime overpass time associated with the Terra
MODIS LST products would be near 1030 local time; how-
ever, this time may vary by 90 min in low-latitude regions and
as great as several hours in high-latitude regions. Similarly,
the Aqua MODIS products would nominally be acquired at
1330 local time. The times of the clear-sky satellite-based LST
observations during 2019 for the Kingston station ranged
from 1012 to 1154 local time for the Terra MODIS observa-
tions and from 1206 to 1400 for the Aqua MODIS observa-
tions. The times of the clear-sky observations for the Wolf
Point station ranged from 1012 to 1212 local time for the
Terra observations and from 1154 to 1342 for the Aqua obser-
vations. The observation times were not provided for the
cloudy-sky conditions when no LST values were available.
For this analysis, the USCRN daily hourly average LST was
retrieved for the hour starting at 1000 local standard time for
the Kingston (1600 UTC) and Wolf Point (1800 UTC)
USCRN locations for the Terra time of observations, and
1200 local standard time for the Kingston (1800 UTC) and
Wolf Point (2000 UTC)Aqua observations.

The monthly daytime mean LST (LSTmean) values were
computed from the USCRN LST data for the Terra and Aqua
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overpass times associated with each station based on the aver-
age of 1) all available (all sky) USCRN LST values and 2) the
USCRN LST values for the clear-sky conditions (as desig-
nated by the MODIS QC and cloud information). Similarly,
the monthly maximum LST (LSTmax) values were computed
for clear-sky and all-sky conditions.

The differences in the monthly mean (dLST) and maximum
(dLSTmax) daytime LST values derived from the clear-sky
and all-sky USCRN in situ observations were computed as

dLST 5 LSTmean(clear sky) – LSTmean(all sky); (1)

and

dLSTmax 5 LSTmax(clear sky) – LSTmax(all sky): (2)

The differences in the clear- and all-sky number of observa-
tions, and values of the observations, were evaluated for the
five years, two stations, and two observation times included in
the analysis. Because of the differences in the number of
available observations for the clear-sky and all-sky LST val-
ues, the monthly daytime LSTmean values were evaluated
with the nonparametric Wilcoxon rank sums test (SAS
2018a). The annual daytime dLST and dLSTmax values were
evaluated, based on the available monthly values, with t-test
(SAS 2018b) and ANOVA analyses (SAS 2018c).

3. Results

a. Number of available observations

The number of clear-sky observations varied considerably
over the five years included in the analysis as well as within each
of the years. The monthly number of clear-sky observations

averaged over the five years of the study was highly variable
among the individual months (Fig. 1). The number of clear-sky
observations varied from a minimum of two observations for
Wolf Point (1800 UTC) during February 2015 to a maximum of
26 observations for Wolf Point (1800 UTC) during July 2018. In
general, the months of November–March exhibited the lowest
number of clear-sky observations.

The percentage of clear-sky observations per year (Fig. 2)
were generally one-half (or less) of the total possible (all sky)
observations over all five years for both locations and obser-
vation times. The ratio of annual clear-sky to all-sky observa-
tions varied from a minimum of 40.5% for the Wolf Point
1800 UTC observations in 2019 to a maximum of 51.6% for
the Kingston 1800 UTC observations in 2016. The overall
mean number of clear-sky observations (all years, for both
USCRN locations and observation times) was 44.1% of the
possible number of observations. The number of clear-sky ob-
servations per year over these two sites are in close agreement
with the regional and global scale estimates of average per-
centage (,50%) of daytime clear-sky pixels derived from
satellite-based observations (Wan et al. 2004; Duan et al.
2017; Z. Zhang et al. 2020).

b. Impact of available observations on mean and
maximum LST

The impact of the number of daytime observations associ-
ated with the clear-sky, as compared with all-sky, conditions
on mean and maximum LST was demonstrated through the
review of a single month (March 2019) and subsequent year
(2019) for the observations at the Kingston location. This lo-
cation, month, and year were selected on the basis of initial
results that suggested further investigation of the details re-
lated to these results was warranted (Table 1).

FIG. 1. Monthly average of the number of clear-sky observations over Kingston and Wolf Point
for the two observation times (UTC) associated with each station during 2015–19.

G A L LO AND KR I S HNAN 1487OCTOBER 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 03:29 PM UTC



The daily and mean monthly values of clear- and all-sky val-
ues of in situ LST, for the 1600 (Fig. 3a) and 1800 UTC
(Fig. 3b) observations for Kingston, are displayed for March
2019. There were 14 clear-sky observations this month at the
1600 observation time (Fig. 3a). The clear-sky mean LST
(7.288C) at this time was nearly identical to the all-sky value
(7.268C). The maximum values, however, differed considerably
with the maximum clear-sky LST value of 15.58C observed on
24 March 2019 (Fig. 3a) while the maximum all-sky observed
LST value of 25.28C was observed on 30 March (a date identified
as cloudy by MODIS information). The 1800 UTC observations

(Fig. 3b) included only 10 clear-sky observations. The results
for the 1800 UTC observations included differences of 5.098C
between the mean values of the clear-sky observations (14.18C)
and the all-sky observations (9.018C). The maximum clear-sky
and all-sky LST values (20.08C) were the same, as they were
both observed on the same date (24 March 2019).

The results of the mean and maximum March 2019 obser-
vations of LST for Kingston (Fig. 3) are displayed with similar
observations for all months during 2019 (Fig. 4). The nearly
identical March monthly mean values for clear- and all-
sky LST observations (Fig. 3a) is depicted in the displayed
monthly values for Kington at 1600 UTC (Fig. 4a). The differ-
ence in maximum values of clear- and all-sky LST observa-
tions displayed in Fig. 3a is displayed in Fig. 4b. In general,
the mean monthly LST values during 2019 are greater for the
clear-sky observations, at both 1600 (Fig. 4a) and 1800 UTC
(Fig. 4c) than for the all-sky observations, during the spring–
autumn months. During this interval, the land surface under
clear conditions would be expected to be warmer than the all-
sky observations (which would include observations under
cloudy conditions). During the winter months, however, the
cloudy conditions included in the all-sky observations would
provide an insulating effect, which resulted in the all-sky
observations being equal to, or warmer than, the clear-sky ob-
servations. Similar results were observed for the Wolf Point
location.

The monthly maximum all-sky LST was greater or equal to
the clear-sky maximum LST for both the 1600 (Fig. 4b) and
1800 UTC (Fig. 4d) observations for all months. This would
be expected because every clear-sky LST observation would
be included in the all-sky observations. Any differences in the
observed maximum temperatures between the clear-sky and
all-sky monthly values would be due to a USCRN in situ obser-
vation being utilized for the all-sky observation, however, not

FIG. 2. Percentage of annual clear-sky observations over Kingston and Wolf Point for the two
observation times (UTC) associated with each station during 2015–19.

TABLE 1. The monthly and annual dLST and dLSTmax values
for the 1600 and 1800 UTC observations at Kingston in 2019,
with significance of the clear-sky and all-sky monthly (available
only for dLST) and annual differences indicated. Note that
single and double asterisks denote significance at p # 0.05 and
p # 0.01, respectively.

dLST dLSTmax

Month 1600 1800 1600 1800

Jan 21.67 21.16 26.70 0.00
Feb 0.16 2.88 20.70 0.00
Mar 0.02 5.09* 29.70 0.00
Apr 2.70 3.71* 22.60 20.40
May 5.43* 5.36* 0.00 0.00
Jun 2.29* 2.01 0.00 0.00
Jul 1.86* 1.49 0.00 0.00
Aug 1.22 1.33 0.00 0.00
Sep 1.34 1.00 0.00 0.00
Oct 1.36 1.71* 21.00 29.00
Nov 20.66 0.62 22.70 22.30
Dec 21.11 20.45 26.60 21.30
Mean 1.08 1.96** 22.50* 21.08
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included as a clear-sky observation as a result of the MODIS
cloud information that designated the observation as cloudy.

c. Differences in clear-sky and all-sky monthly and
annual mean and maximum LST values

The daytime monthly mean and maximum values for the
clear- and all-sky observations were used in Eqs. (1) and (2) to
derive the differences in the clear- and all-sky monthly mean
(dLST) and maximum (dLSTmax) observed LST. The dLST

and dLSTmax values for each of the months for Kingston at
the 1600 and 1800 UTC observation times during 2019 are dis-
played in Table 1 for comparisons with the results in Fig. 4 and
indication of the significant values. The monthly mean clear-
sky observations of LST are generally greater than the all-sky
observations (Figs. 4a,c) such that the resulting dLST values
[Eq. (1)] are generally positive for both observation times,
which resulted in a mean annual dLST of 1.088 and 1.968C for
the 1600 and 1800 UTC observation times, respectively.

FIG. 3. Daytime daily and monthly mean clear-sky and all-sky USCRN in situ LST (8C) values for Kingston at
(a) 1600 and (b) 1800 UTC observation times for March 2019.

FIG. 4. Daytime monthly (left) mean and (right) maximum clear-sky and all-sky USCRN in situ LST values (8C) for
Kingston at (a),(b) 1600 and (c),(d) 1800 UTC observation times for 2019.
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From the analysis of the clear-sky and all-sky LST values
observed at Kingston for the individual months (Table 1),
three and four months displayed significant differences (p# 0.05)
in dLST at the 1600 and 1800 UTC observation times, respec-
tively. Significant differences (p # 0.05) in dLST on a monthly
basis for both stations (Fig. 5) ranged from a minimum of zero
months with significant differences (Wolf Point, 1800 UTC
observation for 2015; Kingston, 1600 UTC observations for
2016) to a maximum of five months (Wolf Point, 1800 UTC
observation for 2016).

An analysis of the combined results of both stations (Fig. 6)
indicated that the winter months exhibited little or no differ-
ences in the LST values while 85% of the values observed

during May were significantly different. Similar to the 2019 re-
sults for Kington displayed in Table 1, the spring months of
April and May display some of the larger dLST values. Mean
monthly dLST values ranged from20.18 6 1.58C during January
to 5.686 1.88C during May.

The clear-sky maximum daytime LST values observed at
Kingston (Figs. 4b,d), are equal or less than the all-sky LST values
such that the resulting dLSTmax values [Eq. (2)] are zero or nega-
tive, which resulted in a mean annual dLSTmax (Table 1) of
22.508 and21.088C for the 1600 and 1800UTC observation times,
respectively. The dLST values were significant at the p# 0.01 level
for the 1800 UTC observations and the dLSTmax values were
significant at the p# 0.05 level for the 1600 UTC observations.

FIG. 5. Number of months with significant differences (p # 0.05) in dLST for each year at the
Kingston and Wolf Point stations.

FIG. 6. Number of months with significant differences (p # 0.05) in dLST for each month for
the two locations, two observation times, and five years (n 5 20 month21). The values in paren-
theses are the mean and standard deviation values (8C) of dLST associated with each month.
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When examined over the five years of the study (Table 2)
the annual dLST values were significant (p# 0.05) for 5 of the
10 combinations of observation times and years for Kingston
and all of the Wolf Point observation years. The dLSTmax val-
ues, similar to the dLST, were significant for 5 of the 10 obser-
vation years for the Kingston location. However, unlike the
Kingston results, there was only one (of 10) observation years
(2000 UTC for 2018) in which the dLSTmax values for clear-
and all-sky conditions were significantly different at Wolf
Point.

When the annual differences in observed results of the two
locations (Table 2) are combined there were significant differ-
ences (p # 0.05) observed in the annual clear-sky and all-sky
mean LST (dLST) values for 75% of the 20 observation years
while significant differences in the clear-sky and all-sky maxi-
mum LST (dLSTmax) values were observed for only 6 of the
20 observation years. Annual averaged differences between
mean clear- and all-sky daytime LST values were 2.588C while
differences between the maximum values of clear- and all-sky
daytime LST values were21.038C.

An analysis of variance associated with the results indicated
that within this limited study both the observation station
location and observation time were statistically significant
factors (p # 0.05) associated with the differences observed in
clear-sky and all-sky mean monthly temperatures. The analy-
sis of the differences in clear- and all-sky monthly maximum
temperatures indicated that station location was a statistically
significant factor (p # 0.10) associated with the observed
differences.

4. Discussion

This study evaluates the effect of using clear-sky daytime
LST instead of all-sky (all-weather) daytime LST observa-
tions on the monthly mean and maximum LST values and its
effect on annual values. The clear-sky bias is estimated as the
difference between clear-sky LST and all-sky LST. Clear-sky
bias was estimated from daytime hourly in situ (surface
based) observations of LST measured with infrared tempera-
ture sensors with accuracy , 60.58C (Krishnan et al. 2020) at
the two USCRN stations. The in situ LST observations corre-
sponded to the nominal daytime Terra/Aqua overpass times

over the two locations to match the available MODIS cloud
information with the in situ LST observations at the stations.
It should be noted that the daytime monthly mean LST in this
study is different from the true monthly mean temperature es-
timated using the continuous LST measurements covering all
diurnal cycles in a month divided by the measurement period
(Zeng and Wang 2012). The QC and cloud information asso-
ciated with the MODIS LST products are used to identify the
clear-sky periods. These periods correspond to daytime condi-
tions when land experiences the greatest daily net radiation.
This is particularly true for Aqua overpass time when the
clear-sky LST would be expected to be near the maximum
value for the land surface (Chen et al. 2017). Daytime monthly
maximum LST was also included in this study, using daily
maximum temperatures observed during clear-sky condi-
tions. The use of daytime LST values is important because
many processes are dependent on daylight and maximum
temperature (Williamson et al. 2013). Monthly maximum
LST is widely used as the official climate record of monthly
temperature and is used in studies focusing on the regional
and global climate change (Trenberth et al. 2007) and also
for the spatial–temporal validation of large-scale land sur-
face models (Koch et al. 2016).

However, the attempts to quantify the clear-sky bias in
satellite-based IR LST and assessment of the impact of rely-
ing only on clear-sky data in the above studies are still scarce.
Recently Ermida et al. (2019) assessed the clear-sky bias
of satellite MW LST at a global scale by utilizing Advanced
Microwave Scanning Radiometer for Earth Observing System
(AMSR-E) passive MW-based LST estimates. The MWmeas-
urements were used as a surrogate for IR LST. Cloud cover-
age information provided from MODIS was used to identify
clear-sky and all-sky conditions and a daytime bias of 2–8 K
was observed between the clear-sky and all-sky LST over the
midlatitudes. However, uncertainties still exist in the estimate
of clear-sky bias by this method because of potential differ-
ences in the LST retrieval by IR and MW sensors, that is,
skin temperature observed by IR sensors as compared with
surface–subsoil temperatures observed by MW sensors. The
MW LST bias with respect to LST by IR sensors alone can
vary up to ,4 K (Ermida et al. 2017). In contrast, Chen et al.
(2017) reported a lack of any significant bias due to cloud
contamination on monthly LST based on the relationship be-
tween the difference between 5-km monthly MODIS LST
(MOD11C3) and in situ LST over 156 sites. The major sources
of uncertainties in this analysis included the difference in the
spectral bands used by the MODIS and in situ sensors, and the
scale difference between the spatial footprint of ground-based
point measurements and the 5-km MODIS LST product satel-
lite platforms. Additionally, additive errors in LST and emis-
sivity due to inhomogeneity, as evident from large RMSE
between in situ LSTs and satellite LSTs (Guillevic et al. 2012;
Krishnan et al. 2015, 2020), cannot be neglected. However,
Chen et al. (2017) found that the monthly mean values from
MODIS day and night clear-sky observations were slightly
higher than monthly all-sky in situ LST. This result suggests
the importance of evaluation of clear-sky bias using LST meas-
urements made with consistent sensors with high accuracy

TABLE 2. Kingston and Wolf Point annual dLST and dLSTmax
values for 2015–19, with significance of clear-sky and all-sky
differences indicated. All times are UTC. Note that single and
double asterisks denote significance at p # 0.05 and p # 0.01,
respectively.

Kingston Wolf Point

dLST dLSTmax dLST dLSTmax

Year 1600 1800 1600 1800 1800 2000 1800 2000

2015 0.54 1.13 21.27* 21.34* 2.80** 3.68** 21.11 20.29
2016 1.17* 1.96** 21.01* 21.23* 4.12** 4.82** 20.25 20.83
2017 1.33 2.71** 21.25 21.00 3.19** 4.80** 20.16 20.38
2018 1.46 2.23** 21.46 20.78 3.49* 3.80* 20.92 20.83*

2019 1.08 1.96** 22.50* 21.08 2.30* 3.07** 21.57 21.30
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and similar field of view. To the best of our knowledge, the
present study represents a first attempt to assess and quan-
tify clear-sky bias of monthly daytime LST and its seasonal
variation utilizing in situ surface-based observations that
are coincident in time with the observed satellite sensor
LST.

The two sites included in this study were selected based on
the number of clear and cloudy observations reported in
Gallo et al. (2011). The USCRN station at Kingston exhibited
a low number of clear days and a high number of cloudy days
whereas the Wolf Point 29ENE station exhibited a relatively
low number of cloudy days and high number of clear days
representing the range of clear-sky days. During the 5-yr pe-
riod from 2015 to 2019 yearly daytime clear-sky observations
at these sites varied from 40% to 52% (from 118 to 189 days),
agreeing with previous reports (,50%) on regional and
global estimates of average clear-sky grids derived from
satellite-based observations (Wan et al. 2004; Duan et al.
2017; Z. Zhang et al. 2020). Even though the percentage of
clear-sky observations at these sites are similar to the global
average, extreme cloudy or clear conditions can occur in other
global environments. Monsoon regions or low latitudes that
experience persistent cloud cover present the low extreme of
clear-sky days, while the number of clear-sky days can vary
up to 340 days yr21 in arid regions across the globe (Z. Zhang
et al. 2020) that can result in a low clear-sky bias in arid re-
gions (Ermida et al. 2019).

The number of clear-sky observations at the USCRN
stations included in this study follows a seasonal pattern
that appears to be controlled by the seasonal variations
of solar radiation at these sites with peak values in summer.
Annual clear-sky observations exhibited interannual varia-
tions with a maximum number of clear-sky days exceeding
180 days at Kingston in 2016, but with no trend. In this
study, we have used MODIS cloud information, over the
1-km pixel that includes the in situ LST observation stations,
to detect cloud presence over the site. Previous studies indi-
cated that the MODIS cloud information results agree with
ground-based active sensors up to 85% (Ackerman et al.
2008) and unidentified clouds in MODIS LST product can
vary between 13% and 17% (Williamson et al. 2013).

Within this study the impact of the use of clear-sky as com-
pared with all-sky LST was most evident in the results ob-
served from daytime monthly mean values rather than
monthly maximum values. The clear-sky bias within monthly
mean daytime LST was generally positive at both sites as ex-
pected due to the increased contribution of solar radiation
(Schwingshackl et al. 2018) under clear-sky conditions leading
to higher LST especially from spring to autumn. The highest
clear-sky bias (5.68C in May; Fig. 6) occurred mostly during
the spring followed by autumn months (4.818C in September)
when changes in snow cover, soil water content and onset or
senescence of vegetation are greatest due to the seasonal cli-
mate conditions at these locations. This result suggests that
the magnitude of clear-sky bias can be influenced by the land
surface radiative properties during the transition periods
while the greater number of clear-sky days in summer re-
sulted in low magnitudes of clear-sky bias. This pattern agrees

with the monthly variation of bias estimated using MW LST
by Ermida et al. (2019) over North America. The magnitude
and distribution of clear-sky bias can vary on regional and
global scales as the distribution of the types of clouds, the
number of clear-sky days per year, and its seasonal variation
depend on the geographical location of the site and the pre-
vailing environmental conditions (Zhang et al. 2015; Z. Zhang
et al. 2020).

While this study was limited to an assessment of clear-sky
bias over two sites in North America, the results clearly dem-
onstrated the impact of clear-sky versus all-sky LST observa-
tions on the monthly and annual mean day time temperatures.
The use of annual maximum LST does minimize the influence
of synoptic and seasonal variability and can provide informa-
tion associated with extreme climatic events and significant
land-cover changes. However, the impact of the use of maxi-
mum LST bias on applications that require LST observations,
especially climate studies, is still uncertain. LST is often assimi-
lated into land surface models for short and medium range
forecasting to improve land–atmosphere exchange simulations
(Qin et al. 2007; Reichle et al. 2010; Rodell et al. 2004) and for
the indirect estimation of near-surface air temperature, but
the effect of using clear-sky versus all-sky observations in
these studies yet to be investigated. However, studies of the
impact of all-sky solar irradiance on assimilation experiments
showed that they provided a higher degree of improvement
when compared with only clear-sky observations (Okamoto
et al. 2019). The use of satellite-derived LST to examine the
long-term LST trends at regional and global scales and their
drivers (Abera et al. 2020; Liu et al. 2021; Yan et al. 2020), ap-
plications relevant to climate change monitoring, or assessing
impact of land-cover changes (Li et al. 2016), suggest that a
better understanding of the bias resulting from the use of
clear-sky as compared with all-sky LST observations could po-
tentially lead to more accurate assessment of trends and lead
to more definitive conclusions.

5. Conclusions

From an analysis of USCRN station hourly in situ observa-
tions of daytime LST coupled with MODIS-designated clear-
sky and all-sky conditions, the results of this study indicate
that both monthly/annual mean and monthly/annual maxi-
mum values of daytime LST can differ significantly when only
clear-sky (as compared with all-sky) values of LST are uti-
lized. Monthly averaged differences between the mean clear-
and all-sky daytime LST (dLST) values varied considerably
by month. The winter months exhibited little or no differ-
ences in the dLST values; however, 85% of the monthly dLST
values observed for the month of May were significantly dif-
ferent. Mean monthly dLST ranged from 20.18 6 1.58C for
January to 5.68 6 1.88C for May. Annually averaged dLST
values, over the five years of the study, were 2.588C while dif-
ferences between the maximum values of clear- and all-sky
daytime LST values were 21.038C. While significant differ-
ences between the mean annual clear-sky and all-sky LST val-
ues were more frequent than the differences observed for the
annual maximum LST values, the results suggest that the
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exclusive use of either mean or maximum clear-sky LST val-
ues is not advisable for applications in which the use of all-sky
LST values would be more applicable.

This study was based the LST observations at times associ-
ated with the daytime overpass times of the Terra and Aqua
MODIS sensors, but the results of this analysis would also be
applicable to other satellite-derived LST observations ac-
quired with similar orbital characteristics. Thus, the results
should be applicable to the LST observations acquired with
the Suomi-NPP and NOAA-20 [Joint Polar Satellite System-1
(JPSS-1)] VIIRS sensors that have similar observation times
(nominal 1330 local overpass times) to the Aqua MODIS ob-
servation times evaluated in this analysis. The results should
also be applicable to the daytime observations acquired by
geostationary satellite-based sensors (e.g., GOES-R series and
others) that permit consistent (day and night) observations.
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2019: Quantifying the clear-sky bias of satellite land surface
temperature using microwave-based estimates. J. Geophys. Res.
Atmos., 124, 844–857, https://doi.org/10.1029/2018JD029354.

Funk, C., and Coauthors, 2019: A high-resolution 1983–2016 Tmax

climate data record based on infrared temperatures and
stations by the Climate Hazard Center. J. Climate, 32,
5639–5658, https://doi.org/10.1175/JCLI-D-18-0698.1.

Gallo, K., R. Hale, D. Tarpley, and Y. Yu, 2011: Evaluation of the
relationship between air and land surface temperature under
clear-and cloudy-sky conditions. J. Appl. Meteor. Climatol.,
50, 767–775, https://doi.org/10.1175/2010JAMC2460.1.

Good, E. J., 2016: An in situ-based analysis of the relationship be-
tween land surface “skin” and screen-level air temperatures.
J. Geophys. Res. Atmos., 121, 8801–8819, https://doi.org/10.
1002/2016JD025318.

Guillevic, P. C., J. L. Privette, B. Coudert, M. A. Palecki, J. Demarty,
C. Ottle, and J. A. Augustine, 2012: Land surface temperature
product validation using NOAA’s surface climate observation
networks}Scaling methodology for the visible infrared imager
radiometer suite (VIIRS). Remote Sens. Environ., 124, 282–298,
https://doi.org/10.1016/j.rse.2012.05.004.

Jaber, S. M., and M. M. Abu-Allaban, 2020: MODIS-based land
surface temperature for climate variability and change re-
search: The tale of a typical semi-arid to arid environment.
Eur. J. Remote Sens., 53, 81–90, https://doi.org/10.1080/
22797254.2020.1735264.
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